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We follow the temporal evolution of mesoscopic intensity fluctuations and correlation in strongly localized
samples. We find an initial burst in relative transmission fluctuations in random one-dimensional �1D� samples
due to fluctuations in the arrival time of ballistic transmission. Relative fluctuations subsequently rise, then
drop to a minimum at a time tm, after which they increase rapidly in 1D simulations and quasi-1D �Q1D�
measurements. For t�3tm, results in 1D and Q1D samples converge toward predictions of a dynamic single-
parameter scaling model. These results reflect the changing number of modes participating appreciably in
transmission as the impact of longer-lived modes grows with time delay.
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The scaling of the electronic conductance or of the trans-
mission of classical waves characterizes the nature of
transport1,2 and provides a window on the underlying quasi-
modes of the random sample.3 Such quasimodes, which we
will refer to as “modes,” correspond to resonances of an
open system. An inverse variation in transmission with
sample thickness indicates that transport is Ohmic or diffu-
sive. In such samples, modes extend throughout the sample
and overlap spectrally. In contrast, when transmission scales
exponentially, modes are exponentially localized within the
sample and isolated spectrally. The descriptions of the trans-
port of electronic and classical waves are strikingly similar.
This can be seen in the equivalence expressed in the Land-
auer relation4 between the dimensionless conductance g
�G / �e2 /h�, where G is the conductance, e is the electron
charge, h is Planck’s constant, and the optical transmittance,
T, g=T��abTab. Here, Tab is the intensity transmission co-
efficient, where, in different experimental configurations, a
�b� may represent either an input �output� transverse propa-
gation mode external to the sample or a position within a
distinct coherence area on the sample surface. The scaling of
g depends only upon the value of g itself and the dimension-
ality of the sample. Anderson localization is achieved when
g�1.2 Localization of classical waves is of special interest
because waves can be localized purely by wave interference
without the complicating role of the Coulomb interaction. In
addition, measurements of fluctuations of relative transmis-
sion, which are greatly enhanced in the localization transi-
tion, can be made for single channels or for sums over chan-
nels in a random ensemble of statistically equivalent
samples. Indeed, g and the variance of fluctuations of total
transmission normalized by its ensemble average are in-
versely related.5–14 Thus the statistics of steady-state trans-
mission, which can be measured for classical waves, charac-
terize propagation, and localization in random media.

Recently there has been great interest in the dynamics in
the localization transition. In contrast to measurements of the
scaling of transmission which can track the changing impact
of weak localization on samples of different sizes, pulsed
measurements may provide the changing contributions of un-
derlying electromagnetic modes with different decay rates in
samples of a particular scale. A slowdown of the rate of

decay of transmission of classical waves has been observed
in microwave,15,16 optical,17 and ultrasound18 experiments
near and beyond the localization threshold. A related reduc-
tion has been observed in the spreading of matter waves due
to Anderson localization of Bose-Einstein condensates in a
random potential created by one-dimensional �1D� optical
speckle patterns.19 The ensemble average of pulsed transmis-
sion was measured for localized ultrasound just beyond the
mobility edge in a slab of sintered aluminum beads18 and for
strongly localized microwave radiation in random dielectric
quasi-1D �Q1D� samples.16 The ultrasound measurements of
ensemble averaged intensity, �I�t��, were well fit by the self-
consistent theory of localization �SCLT� �Refs. 18, 20, and
21� with a renormalized diffusion coefficient in space and
frequency. In strongly localized Q1D samples, however, the
decay rate of microwave transmission fell below predictions
for SCLT.16 The slowing down of transport at long times was
explained in terms of a 1D dynamic single parameter scaling
�DSPS� model which neglects mode overlap and averages
over the distribution of decay rates and associated transmis-
sion strengths of localized modes.2,16 The relative contribu-
tions of long-lived localized modes and short-lived “necklace
states” is central to understanding dynamics.22–25 Necklace
states are formed by the hybridization of spectrally overlap-
ping localized states to form multiply-peaked modes in space
which decay relatively rapidly through the sample boundary.
In addition to a decay of average transmission, observations
of a corresponding growth in correlation with time have been
made in microwave measurements of in diffusive samples26

but dynamic measurements of mesoscopic phenomena have
not as yet been carried out in localized samples.

Here we report studies of the dynamics of mesoscopic
fluctuations and correlation for localized waves. 1D simula-
tions and microwave measurements in Q1D samples reveal a
complex temporal variation in transmission statistics follow-
ing an excitation pulse. A short jump is observed in relative
fluctuations in 1D due to the variations in the speed of the
ballistic wave in different configurations. Subsequently, rela-
tive fluctuations rise and then drop to a minimum at a time tm
and then rise again. The variation in fluctuations is explained
in terms of the changing effective number of modes that
contribute to transmission. Fluctuations are enhanced at t
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� tm and t� tm by the selective contribution to transmission
of short- and long-lived modes, respectively. For t�3tm, re-
sults in 1D and Q1D samples converge toward predictions of
the DSPS model for isolated localized modes.

Measurements are carried out on Q1D samples contained
in 7.3-cm-diameter copper tubes of various lengths. The
tubes are filled with alumina spheres of diameter 0.95 cm
and refractive index 3.14 embedded in Styrofoam spheres of
diameter 1.9 cm at an alumina volume filling fraction of
0.068. Measurements are carried out in a narrow frequency
window from 10–10.24 GHz just above the first Mie reso-
nance of the alumina spheres in which localization is fos-
tered by near resonant scattering and a dip in the density of
states.27 Spectra of the transmitted field are obtained using a
vector network analyzer. Ensembles of sample realizations
are created by momentarily rotating the sample tube between
measurements. The average intensity localization length in

the sample is �̄=30 cm.16

The response to a Gaussian incident field pulse, E0�t�
�exp�−t2 /2�t

2�exp�i2��0t� is obtained by taking the Fourier
transform of the product of the spectra of the transmitted
field and the incident pulse, E����exp�−��−�0�2 /2�2	,
where �= �2��t�−1. This gives the time-dependent field E�t�
and intensity 
E�t�
2. Measurements are made in a number of
experimental configurations. In one, transmission of a plane
wave produced by a horn antenna is detected by a 4-mm wire
antenna translated on a 2-mm grid over the output surface of
61-cm-long samples in 200 sample configurations. In another
experimental arrangement, waves are launched and detected
using conical horns at a distance from the sample.

Cumulant correlation functions of relative intensity,

Îa�r , t�= Ia�r , t� / �Ia�r , t��, with displacement on the output

surface, �r, C��r , t�= �	Îa�r , t�	Îa�r+�r , t��, for a single in-
cident transverse mode, a, are shown in Fig. 1 for different

time delays, t, in Q1D samples with L�2�̄. Here 	Îa�r�

= Îa�r�−1 is the deviation of relative intensity from its en-
semble average of 1. The correlation function has the same
form for localized and diffusive waves, C��r�=F��r�+
�1
+F��r�	.5,13 Here F��r , t�= 
FE
2 is the square of the normal-
ized field correlation function and 
 is the degree of relative
intensity correlation at displacements for which F=0, so that,
for example, 
=C��r0� at the first zero of C. In the diffusive
limit, 
→0 and C=F is correlated over the short range of a
speckle spot. FE is the Fourier transform of the normalized
specific intensity, which is the angular distribution of trans-
mitted intensity, which does not change in time. As a result,
F is independent of t, as seen in the inset in Fig. 1. 
 is seen
to drop at early times before increasing.

It was not possible to study early time dynamics of cor-
relation in Q1D samples with short pulses because of the
narrow frequency band over which the statistics of propaga-
tion are uniform. However, the response of narrow pulses
could be calculated in 1D simulations. Configurations of ran-
dom samples are constructed using the model described in
Ref. 16. Samples of N=L /a layers of equal thickness a, are
embedded in vacuum with �=1 and wave speed c, the speed
of light. The dielectric constant in each layer, �i, is a uni-
formly distributed random number between 0.3 and 1.7. The
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FIG. 2. �Color online� �a� Variance of relative intensity vs. t in

1D. �b� Initial jump in var�Î�t�	 is associated with the different times
of arrival tarr of the rising edge of I�t� in different random configu-
rations. The dashed curve is the configuration average of I�t�. The
inset shows the arrival time tarr in different configurations closely
matches the calculated ballistic time through the sample with N
elements of thickness a and average phase velocity ṽ.
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FIG. 1. �Color online� Spatial correlation, C��r� for different
delay times t from the peak of an incident Gaussian pulse in a

sample of L=61 cm �2�̄. C��r� falls at early times and then rises,
while the square of corresponding field correlation functions,
F���r��, shown in the inset, are independent of time. The dashed
vertical lines at �r0=12 indicate the first zero of F at which point,

C=
. C�0�=var�Îa�r�	 and C��r0��
 are shown on the vertical
lines on the right and left sides of the figure, respectively.
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intensity localization length is �̄=−L / �ln T�=22a and the
central frequency is �0=0.26c /a.16

The temporal variation in relative fluctuations in transmis-

sion in 1D following a Gaussian incident pulse, var�Î�t�	,
calculated using spectra of the transmitted field just beyond
the output surface for an ensemble of 50 000 configurations

is shown in Fig. 2�a�. The sharp spike in var�Î�t�	 �Fig. 2�a�	
is due to differences in the transit time of the leading edge of
the ballistic pulse in different random configurations �Fig.

2�b�	, which leads to large fluctuations in Î�t�. The time at
which the leading edge of the pulse arrives at the sample
output, tarr, determined by the time at which I�t� reaches the
value 10−8, is seen to closely track the calculated ballistic
arrival time, �i

Na��i /c��N / ṽ��a /c�. Once the leading edge
of the pulse is transmitted, I�t�, remains high for a time equal
to the inverse bandwidth of the exciting pulse and relative
fluctuations drop to a minimum. After this time, the fluctua-
tions from one configuration to another have relative maxima
at different times as a result of the random phasing of con-
tribution to transmission of modes of electromagnetic radia-
tion at different frequencies in different sample configura-
tions. The variance of fluctuations is then inversely

proportional to the effective number of modes contributing
significantly to transmission. At first, only the shortest-lived
modes contribute appreciably to transmission since longer-
lived modes surrender their energy slowly. This leads to a
peak in var�Î�t�	 at �160a /c. After this time, the contribu-
tion of longer-lived modes begins to be felt since energy in
the shortest-lived modes has already leaked from the sample.
As a result, the effective number of modes contributing to
transmission increases and var�Î�t�	 falls.

The dynamics of fluctuations over a broader time scale for
measurements in Q1D and simulations in 1D are shown in
Figs. 3 and 4. Measurement in quasi-1D and simulation in
1D show minima in var�Îa�t�	 �Fig. 3�a�	 and var�Î�t�	 �Fig.
3�b�	 at a time tm, which we find is independent of pulse
bandwidth. This indicates that tm reflects a property of modes
of the medium. The minimum is associated with a transition
from a condition in which short-lived modes dominate trans-
mission to one in which long-lived modes predominate. Pre-
sumably, tm corresponds to the time within the intermediate
time range of Fig. 3 at which the largest number of modes
participate appreciably to transmission.

Since the rapid increase in �var�Îa�r , t�	 after tm arises
from the dominance of long-lived modes, its behavior might
be modeled by the DSPS model proposed in Ref. 16. Ac-
cording to this model, localized modes peaked in space at
depth z into the sample have an amplitude A�� ,z�=exp
�−�
L−2z
� at the output surface, where the Lyapunov expo-
nent, �=1 /2�, is drawn from a Gaussian distribution, P���
=�L /2��̄exp�−��− �̄�2 / �2�̄ /L�	 �Ref. 2� with a lower cutoff
limited by the sample length, i.e., �B /L, where B is the
only adjustable parameter in our model. The time response to
a Gaussian incident pulse at long times can be written as

IDSPS�t� = ��
i=1

M

E��i�A��i,zi�
���i,zi�

2

�exp�−
���i,zi�

2
t − i2��it��2

, �1�

where ���i ,zi� is the decay rate of a localized state located at
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FIG. 3. �Color online� Dynamic variance of normalized trans-
mission for three sample lengths and a fixed pulse width obtained
from �a� measurements in Q1D for three sample lengths, L

=40 cm �1.33�̄, L=50 cm �1.67�̄, and L=61 cm �2�̄, and �b�
simulations in 1D �curves� and the results of the DSPS model for
t�2.5tm �open circles�.
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FIG. 4. �Color online� Comparison of measurements of the dy-
namics of infinite-range correlation in a Q1D sample of L=50 cm

�1.67�̄ and calculations of the variance of intensity in the DSPS
model for a corresponding 1D sample.
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zi with a localization length �i=1 /2�i and �i is the frequency
of the localized state. The explicit expression for ���i ,zi� is
given in Eq. �3� of Ref. 16. In our Monte Carlo simulations
of the DSPS model for IDSPS�t�, we average over a window
of size ��=0.207c /a. We assume that the number of states
M excited inside the window follows the Poisson distribution

with a mean M̄ equals to ���L, where the density of states
per unit length at �0 is �=1.32c−1, and the frequencies �i
�i=1,2 , . . . ,M� are chosen randomly inside the window. The
results of the DSPS model for t�2.5tm are shown as circles
in Fig. 3�b�. Excellent agreement between the DSPS model
and 1D simulations is found for t�3tm. Variances of inten-
sity are seen in Fig. 3 to be larger for longer samples at early
times as is found in steady state. But at later times, variances
are larger in shorter samples. In this case, the density of
trajectories at a given time is larger than in longer samples
and the probability of trajectories crossing is greater.

Though �I� may be compared to either �Ia�r��,
�Ia��rIa�r�� or �T��aTa� since these are the same in 1D,
the strength of second-order statistics in Q1D depends upon
the extent of spatial averaging over the speckle pattern. The

most apt comparison of var�Î� to second order transmission
statistics in Q1D is to var�s=T / �T��, which is equal to the

infinite-range correlator, 
���	Îa�r�	Îa��r���,
5,6,9,10,13,14

where a�a�, and r and r� are two position on the output
surface at which field correlation vanishes. Short-range cor-
relation of the speckle pattern does not contribute to either

var�Î� or 
�. On the one hand, 
� is independent of the
choice of input and output transverse mode or position in
Q1D, while on the other, there is no transverse intensity

variation in 1D. A DSPS calculation of var�Î� and measure-

ments of 
� in Q1D for a sample with L / �̄�1.67 excited by
a pulse of width �=5 MHz are compared in Fig. 4. Good
agreement is obtained for t�700 ns �3tm. We use the same
values for the parameters which appear in Eq. �3� of Ref. 16,
which were obtained there by fitting the decay rate at long
times. The density of states per unit length in this system is
�=8.67 ns /cm. These results demonstrate that for long
times, measurements in Q1D approach Monte Carlo simula-
tions of the 1D DSPS theory in corresponding samples. This
convergence even in samples for which L / �̄ is not much
larger than unity reflects the similar probability distributions
for Î and s for long times. This is in contrast to the log-
normal distribution of s in steady state predicted only for
L / �̄�1,2,28 and reflects the dominance of localized modes at
long times.

In conclusion, the dynamics of mesoscopic fluctuations of
localized waves provides a window on the evolving contri-
butions of short- and long-lived electromagnetic modes of
the random medium. For t� tm but somewhat greater than
tarr, the transmitted energy is due to modes which release
their energy quickly, while for t� tm a decreasing subset of
long-lived modes contribute substantially to transmission
leading to increasingly enhanced mesoscopic fluctuations. At
tm, the contributions to transmission of necklace states and
long-lived localized modes are most democratically repre-
sented and the variance of fluctuations is at a minimum.
These results show that complex mesoscopic transport phe-
nomena for localized waves can be clarified by applying a
modal analysis.
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